

pangeo-forge-runner

[image: Documentation Status] [https://pangeo-forge-runner.readthedocs.io/en/latest/?badge=latest]
[image: Tests passing]
[image: codecov] [https://codecov.io/gh/yuvipanda/pangeo-forge-runner]
[image: PyPI version] [https://badge.fury.io/py/pangeo-forge-runner]
[image: pre-commit.ci status] [https://results.pre-commit.ci/latest/github/yuvipanda/pangeo-forge-runner/main]

Commandline tool to manage pangeo-forge [https://pangeo-forge.readthedocs.io/en/latest/]
feedstocks

Tutorials

	Running a recipe locally

	Run a Recipe on a Flink Cluster on AWS EKS

Contents

	Configuration Reference
	Bakery

	Storage

	Commands

	Glossary

Development

	Release

Running a recipe locally

pangeo-forge-runner supports baking your recipes locally, primarily so you
can test the exact setup that will be used to bake your recipe on the cloud.
This allows for fast iteration on your recipe, while guaranteeing that the
behavior you see on your local system is what you will get when running
scaled out on the cloud.

Clone a sample recipe repo to work on

This tutorial will work with any recipe, but to simplify things we will use
this pruned GPCP Recipe [https://github.com/pforgetest/gpcp-from-gcs-feedstock/]
that pulls a subset of GPCPC netcdf files from Google Cloud storage and writes it
out as Zarr. The config we have setup for pangeo-forge-runner will fetch the
files from remote storage only once on your system, caching it so future runs
will be faster.

This same setup would work for any recipe!

	Clone a copy of the recipe to work on:

git clone https://github.com/pforgetest/gpcp-from-gcs-feedstock
cd gpcp-from-gcs-feedstock

You can make edits to this if you would like.

	Setup a virtual environment that will contain pangeo-forge-runner and
any other dependencies this recipe will need. We use a venv here,
but you may also use conda or other python package management setup you
are familiar with.

python -m venv venv
source venv/bin/activate

	Install pangeo-forge-runner into this environment.

pip install pangeo-forge-runner

Now you’re ready to go!

Setting up config file

Construct a local_config.py file that describes where the output
data should go, and what should be used for caching the input files. Since we just
want to test locally, these can point to the local filesystem!

Let's put all our data on the same dir as this config file
from pathlib import Path
import os
HERE = Path(__file__).parent

DATA_PREFIX = HERE / 'data'
os.makedirs(DATA_PREFIX, exist_ok=True)

Target output should be partitioned by job id
c.TargetStorage.root_path = f"{DATA_PREFIX}/{{job}}"

c.InputCacheStorage.fsspec_class = c.TargetStorage.fsspec_class
c.InputCacheStorage.fsspec_args = c.TargetStorage.fsspec_args

Input data cache should *not* be partitioned by job id, as we want to get the datafile
from the source only once
c.InputCacheStorage.root_path = f"{DATA_PREFIX}/cache/input"

c.MetadataCacheStorage.fsspec_class = c.TargetStorage.fsspec_class
c.MetadataCacheStorage.fsspec_args = c.TargetStorage.fsspec_args
Metadata cache should be per job, as kwargs changing can change metadata
c.MetadataCacheStorage.root_path = f"{DATA_PREFIX}/{{job}}/cache/metadata"

This will create a directory called data in the same directory this
config file is located in, and put all outputs and caches in there. To
speed up multiple runs, input files will be cached under the data/cache
directory.

Run a pruned version of your recipe

You’re all set to run your recipe now!

pangeo-forge-runner bake \
 --config local_config.py \
 --repo . \
 --Bake.job_name=test1 \
 --prune

This should run for a few seconds, and your output Zarr should now be
in output/tests1! Let’s explore the various parameters passed.

	--config local_config.py specifies the config file we want pangeo-forge-runner
to read. If we were to try to run this on GCP or AWS, we can have additional
aws_config.py or gcp_config.py files, and just pass those instead - everything
else can remain the same. By putting most config into files, this also eases
collaboration - multiple people can know they’re running the same config.

	--repo . specifies that we want the current directory to be treated as a recipe
and run. This can instead point to a git repo, zenodo URI, etc as needed.

	--Bake.job_name=test1 specifies a unique job name for this particular run.
In our local_config.py, we use this name to create the output directory. If
not specified, this would be autogenerated.

	--prune specifies we only want to run the recipe on about 2 input files, rather
than on everything. This makes for fast turnaround time and easy testing.

You can test the created Zarr store by opening it with xarray

>>> import xarray as xr
>>> ds = xr.open_zarr("data/test1/gpcp")
>>> ds
<xarray.Dataset>
Dimensions: (latitude: 180, nv: 2, longitude: 360, time: 2)
Coordinates:
 * latitude (latitude) float32 -90.0 -89.0 -88.0 -87.0 ... 87.0 88.0 89.0
 * longitude (longitude) float32 0.0 1.0 2.0 3.0 ... 356.0 357.0 358.0 359.0
 * time (time) datetime64[ns] 1996-10-01 1996-10-02
Dimensions without coordinates: nv
Data variables:
 lat_bounds (latitude, nv) float32 dask.array<chunksize=(180, 2), meta=np.ndarray>
 lon_bounds (longitude, nv) float32 dask.array<chunksize=(360, 2), meta=np.ndarray>
 precip (time, latitude, longitude) float32 dask.array<chunksize=(1, 180, 360), meta=np.ndarray>
 time_bounds (time, nv) datetime64[ns] dask.array<chunksize=(1, 2), meta=np.ndarray>
Attributes: (12/41)
 Conventions: CF-1.6, ACDD 1.3
 Metadata_Conventions: CF-1.6, Unidata Dataset Discovery v1.0, NOAA ...
 acknowledgment: This project was supported in part by a grant...
 cdm_data_type: Grid
 cdr_program: NOAA Climate Data Record Program for satellit...
 cdr_variable: precipitation

 sensor: Imager, TOVS > TIROS Operational Vertical Sou...
 spatial_resolution: 1 degree
 standard_name_vocabulary: CF Standard Name Table (v41, 22 February 2017)
 summary: Global Precipitation Climatology Project (GPC...
 time_coverage_duration: P1D
 title: Global Precipitation Climatatology Project (G...
>>>

Run a Recipe on a Flink Cluster on AWS EKS

pangeo-forge-runner [https://github.com/pangeo-forge/pangeo-forge-runner] supports baking your recipes on Apache Flink using
the Apache Flink Runner [https://beam.apache.org/documentation/runners/flink/]
for Beam. After looking at various options, we have settled on supporting
Flink on Kubernetes using Apache’s Flink Operator [https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/].
This allows us to bake recipes on any Kubernetes cluster! In this tutorial, we’ll bake a recipe that we use
for integration tests [https://github.com/pangeo-forge/pangeo-forge-runner/tree/main/tests/integration] on
an Amazon EKS [https://aws.amazon.com/eks/] k8s cluster!

Current support:

	pangeo-forge-recipes version

	pangeo-forge-runner version

	flink k8s operator version

	flink version

	apache-beam version

	>=0.10.0

	>=0.9.1

	1.6.1

	1.16

	>=2.47.0(all versions listed here [https://repo.maven.apache.org/maven2/org/apache/beam/beam-runners-flink-1.16/])

 Configuration Reference

Configuration Reference

pangeo-forge-runner uses the very flexible
traitlets [https://traitlets.readthedocs.io/en/stable/] system (also used by
the Jupyter & Dask ecosystems) for configuration. This page links out to all
the configurable parts of pangeo-forge-runner. Configuration can be set via
command-line
options [https://traitlets.readthedocs.io/en/stable/config.html#command-line-arguments],
or via a dedicated config
file [https://traitlets.readthedocs.io/en/stable/config.html#configuration-objects-and-files]
in .json or .py format

	Bakery

	Storage

	Commands

	Glossary

 Bakery

Bakery

The “Baker” configures the compute plane where the recipe is baked -
it wraps an Apache Beam Runner [https://beam.apache.org/documentation/#runners]
in an opinionated fashion.

DataflowBakery

	
class pangeo_forge_runner.bakery.dataflow.DataflowBakery(**kwargs: Any)

	Bake a Pangeo Forge recipe on GCP Dataflow

	
disk_size_gb c.DataflowBakery.disk_size_gb = Int(None)

	The disk size, in gigabytes, to use on each remote Compute Engine worker instance.

Set to None (default) for default sizing
(see https://cloud.google.com/dataflow/docs/reference/pipeline-options#worker-level_options for details).

	
machine_type c.DataflowBakery.machine_type = Unicode('n1-highmem-2')

	GCP Machine type to use for the Dataflow jobs.

Ignored if use_dataflow_prime is set.

	
max_num_workers c.DataflowBakery.max_num_workers = Int(None)

	Maximum number of workers this job can be autoscaled to.

Set to None (default) for no limit.

	
project_id c.DataflowBakery.project_id = Unicode(None)

	GCP Project to submit the Dataflow job into.

Defaults to the output of gcloud config get-value project if unset.
Must be set for the Bakery to function.

	
region c.DataflowBakery.region = Unicode('us-central1')

	GCP Region to submit the Dataflow jobs into

	
service_account_email c.DataflowBakery.service_account_email = Unicode(None)

	If using a GCP service account to deploy Dataflow jobs, this option specifies the
service account email address, which must be set to avoid permissions issues during
pipeline execution. If you are using GCP user creds, do not set this value.

Defaults to the output of gcloud config get-value account if this value is a
service account email address. If this value is a user email address, defaults
to None.

	
temp_gcs_location c.DataflowBakery.temp_gcs_location = Unicode(None)

	GCS URL under which to put temporary files required to launch dataflow jobs

Must be set, and be a gs:// URL.

	
use_dataflow_prime c.DataflowBakery.use_dataflow_prime = Bool(False)

	Use GCP’s DataFlow Prime instead of regular DataFlow.

https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime has more information
on the advantages of dataflow prime.

	
use_public_ips c.DataflowBakery.use_public_ips = Bool(False)

	Use public IPs for the Dataflow workers.

Set to false for projects that have policies against VM
instances having their own public IPs

LocalDirectBakery

	
class pangeo_forge_runner.bakery.local.LocalDirectBakery(**kwargs: Any)

	Bake recipes on your local machine, without docker.

Uses the Apache Beam DirectRunner

	
num_workers c.LocalDirectBakery.num_workers = Int(0)

	Number of workers to use when baking the recipe.

Defaults to 0, which is interpreted by Apache beam to be the
number of CPUs on the machine

FlinkOperatorBakery

	
class pangeo_forge_runner.bakery.flink.FlinkOperatorBakery(**kwargs: Any)

	Bake a Pangeo Forge recipe on a Flink cluster based on the Apache Flink k8s Operator

Requires a kubernetes cluster with https://github.com/apache/flink-kubernetes-operator
installed

	
beam_executor_resources c.FlinkOperatorBakery.beam_executor_resources = Dict()

	Resources to be given the beam executor container.

Passed through to the kubernetes specification for the container that
actually runs the custom python code we have. See
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-requests-and-limits-of-pod-and-container
for possible options.

Note that this is not specified the same way as other resource
request config on this class.

	
enable_job_archiving c.FlinkOperatorBakery.enable_job_archiving = Bool(False)

	Enable the ability for past jobs to be archived so the job
manager’s REST API can still return information after completing

	
flink_configuration c.FlinkOperatorBakery.flink_configuration = Dict()

	Properties to set as Flink configuration.

See https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/config/
for full list of configuration options. Make sure you are looking at the right
setup for the version of Flink you are using.

	
flink_version c.FlinkOperatorBakery.flink_version = Unicode('1.16')

	Version of Flink to use.

Must be a version supported by the Flink Operator installed in the cluster

	
job_archive_efs_mount c.FlinkOperatorBakery.job_archive_efs_mount = Unicode('/opt/history/jobs')

	The NFS mount path where past jobs are archived so the historyserver
REST API can return some information about job statuses after
job managers are torn down

The default path here corresponds to what the pangeo-forge-cloud-federation Terraform deploys as the mount path:
https://github.com/pangeo-forge/pangeo-forge-cloud-federation/blob/main/terraform/aws/operator.tf

If using that Terraform you can configure the path via historyserver_mount_path:
https://github.com/pangeo-forge/pangeo-forge-cloud-federation/blob/main/terraform/aws/variables.tf

	
job_manager_resources c.FlinkOperatorBakery.job_manager_resources = Dict()

	Memory & CPU resources to give to the jobManager pod.

Passed through to .spec.jobManager.resource in the FlinkDeployment CRD.

See https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/docs/custom-resource/reference/#resource
for accepted keys and what they mean. Specifically, note that this is not
specified the same way as kubernetes resource requests in general.

Note that at least memory must be set.

	
max_parallelism c.FlinkOperatorBakery.max_parallelism = Int(-1)

	The pipeline wide maximum degree of parallelism to be used.
The maximum parallelism specifies the upper limit for dynamic scaling
and the number of key groups used for partitioned state.

Defaults to -1, which is no limit.

	
parallelism c.FlinkOperatorBakery.parallelism = Int(-1)

	The degree of parallelism to be used when distributing operations onto workers.

Defaults to -1, which uses Flinks’ defaults.

	
task_manager_resources c.FlinkOperatorBakery.task_manager_resources = Dict()

	Memory & CPU resources to give to the taskManager container.

Passed through to .spec.taskManager.resource in the FlinkDeployment CRD.

Note this is just the resources for the taskManager container only - not
for the beam executor container where our python code is actually executed.
That is managed via beam_executor_resources.

See https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/docs/custom-resource/reference/#resource
for accepted keys and what they mean. Specifically, note that this is not
specified the same way as kubernetes resource requests in general.

Note that at least memory must be set.

 Storage

Storage

The Storage configuration lets you configure via fsspec [https://filesystem-spec.readthedocs.io/en/latest/]
where pangeo-forge-runner puts intermediate & final data products.

TargetStorage

	
class pangeo_forge_runner.storage.TargetStorage(**kwargs: Any)

	Storage configuration for where the baked data should be stored

	
fsspec_args c.TargetStorage.fsspec_args = Dict()

	Args to pass to fsspec_class during instantiation

	
fsspec_class c.TargetStorage.fsspec_class = Type(<class 'fsspec.spec.AbstractFileSystem'>)

	FSSpec Filesystem to instantiate as class for this target

	
root_path c.TargetStorage.root_path = Unicode('')

	Root path under which to put all our storage.

If {job_name} is present in the root_path, it will be expanded to the
unique job_name of the current job.

InputCacheStorage

	
class pangeo_forge_runner.storage.InputCacheStorage(**kwargs: Any)

	Storage configuration for caching input files during recipe baking

	
fsspec_args c.InputCacheStorage.fsspec_args = Dict()

	Args to pass to fsspec_class during instantiation

	
fsspec_class c.InputCacheStorage.fsspec_class = Type(<class 'fsspec.spec.AbstractFileSystem'>)

	FSSpec Filesystem to instantiate as class for this target

	
root_path c.InputCacheStorage.root_path = Unicode('')

	Root path under which to put all our storage.

If {job_name} is present in the root_path, it will be expanded to the
unique job_name of the current job.

 Commands

Commands

pangeo-forge-runner supports various commands that
can be configured via traitlets.

expand-meta

	
class pangeo_forge_runner.commands.expand_meta.ExpandMeta(**kwargs: Any)

	Application to expand meta.yaml to be fully formed.

Will execute arbitrary code if necessary to resolve
dict_object recipes.

	
config_file c.ExpandMeta.config_file = Unicode('pangeo_forge_runner_config.py')

	Load traitlet config from this file if it exists

	
content_providers c.ExpandMeta.content_providers = List()

	List of ContentProviders to use to fetch repo.

Uses ContentProviders from repo2docker for doing most of the work.
The ordering matters, and Git is used as the default for any URL
that we can not otherwise determine.

If we want to support additional contentproviders, ideally we can
contribute them upstream to repo2docker.

	
feedstock_subdir c.ExpandMeta.feedstock_subdir = Unicode('feedstock')

	Subdirectory inside the repository containing the meta.yaml file

	
json_logs c.ExpandMeta.json_logs = Bool(False)

	Provide JSON formatted logging output to stdout.

If set to True, all output will be emitted as one JSON object per
line.

Each line will have at least a ‘status’ field and a ‘message’ field.
Various other keys will also be present based on the command being called
and the value of ‘status’.

TODO: This must get a JSON schema.

	
log_datefmt c.ExpandMeta.log_datefmt = Unicode('%Y-%m-%d %H:%M:%S')

	The date format used by logging formatters for %(asctime)s

	
log_format c.ExpandMeta.log_format = Unicode('[%(name)s]%(highlevel)s %(message)s')

	The Logging format template

	
logging_config c.ExpandMeta.logging_config = Dict()

	Logging configuration for this python application.

When set, this value is passed to logging.config.dictConfig,
and can be used to configure how logs throughout the application
are handled, not just for logs from this application alone.

See https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
for more details.

	
ref c.ExpandMeta.ref = Unicode(None)

	Ref of feedstock repo to fetch.

Optional, only used for some methods of fetching (such as git or
mercurial)

	
repo c.ExpandMeta.repo = Unicode('')

	URL of feedstock repo to operate on.

Can be anything that is interpretable by self.content_providers,
using Repo2Docker ContentProviders. By default, this includes Git
repos, Mercurial Repos, Zenodo, Figshare, Dataverse, Hydroshare,
Swhid and local file paths.

	
show_config c.ExpandMeta.show_config = Bool(False)

	Instead of starting the Application, dump configuration to stdout

	
show_config_json c.ExpandMeta.show_config_json = Bool(False)

	Instead of starting the Application, dump configuration to stdout (as JSON)

bake

	
class pangeo_forge_runner.commands.bake.Bake(**kwargs: Any)

	Command to bake a pangeo forge recipe in a given bakery

	
bakery_class c.Bake.bakery_class = Type(<class 'pangeo_forge_runner.bakery.local.LocalDirectBakery'>)

	The Bakery to bake this recipe in.

The Bakery (and its configuration) determine which Apache Beam
Runner is used, and how options for it are specified.
Defaults to LocalDirectBakery, which bakes the recipe using Apache
Beam’s “DirectRunner”. It doesn’t use Docker or the cloud, and runs
everything locally. Useful only for testing!

	
config_file c.Bake.config_file = Unicode('pangeo_forge_runner_config.py')

	Load traitlet config from this file if it exists

	
container_image c.Bake.container_image = Unicode('')

	Container image to use for this job.

For GCP DataFlow leaving it blank defaults to letting beam
automatically figure out the image to use for the workers
based on version of beam and python in use.

For Flink it’s required that you pass an beam image
for the version of python and beam you are targeting
for example: apache/beam_python3.10_sdk:2.51.0
more info: https://hub.docker.com/layers/apache/

Note that some runners (like the local one) may not support this!

	
content_providers c.Bake.content_providers = List()

	List of ContentProviders to use to fetch repo.

Uses ContentProviders from repo2docker for doing most of the work.
The ordering matters, and Git is used as the default for any URL
that we can not otherwise determine.

If we want to support additional contentproviders, ideally we can
contribute them upstream to repo2docker.

	
feedstock_subdir c.Bake.feedstock_subdir = Unicode('feedstock')

	Subdirectory inside the repository containing the meta.yaml file

	
job_name c.Bake.job_name = Unicode(None)

	Optionally pass a custom job name for the job run.

If None (the default), a unique name will be generated for the job.

	
json_logs c.Bake.json_logs = Bool(False)

	Provide JSON formatted logging output to stdout.

If set to True, all output will be emitted as one JSON object per
line.

Each line will have at least a ‘status’ field and a ‘message’ field.
Various other keys will also be present based on the command being called
and the value of ‘status’.

TODO: This must get a JSON schema.

	
log_datefmt c.Bake.log_datefmt = Unicode('%Y-%m-%d %H:%M:%S')

	The date format used by logging formatters for %(asctime)s

	
log_format c.Bake.log_format = Unicode('[%(name)s]%(highlevel)s %(message)s')

	The Logging format template

	
logging_config c.Bake.logging_config = Dict()

	Logging configuration for this python application.

When set, this value is passed to logging.config.dictConfig,
and can be used to configure how logs throughout the application
are handled, not just for logs from this application alone.

See https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
for more details.

	
prune c.Bake.prune = Bool(False)

	Prune the recipe to only run for 2 time steps.

Makes it much easier to test recipes!

	
recipe_id c.Bake.recipe_id = Unicode(None)

	Optionally pass this value to run only this recipe_id from the feedstock.

If empty, all recipes from the feedstock will be run.

	
ref c.Bake.ref = Unicode(None)

	Ref of feedstock repo to fetch.

Optional, only used for some methods of fetching (such as git or
mercurial)

	
repo c.Bake.repo = Unicode('')

	URL of feedstock repo to operate on.

Can be anything that is interpretable by self.content_providers,
using Repo2Docker ContentProviders. By default, this includes Git
repos, Mercurial Repos, Zenodo, Figshare, Dataverse, Hydroshare,
Swhid and local file paths.

	
show_config c.Bake.show_config = Bool(False)

	Instead of starting the Application, dump configuration to stdout

	
show_config_json c.Bake.show_config_json = Bool(False)

	Instead of starting the Application, dump configuration to stdout (as JSON)

 Glossary

Glossary

A glossary of common terms used throughout pangeo-forge-runner.

	job_id
	An autogenerated, non-human readable unique ID that represents a particular beam
job. These are generated by the beam runner on submission, not set by the submitting user.

For some bakeries (such as flink), the beam runner does not generate a unique ID during submission.
In those cases, this will be the same as job_name

As this is only known after job submission, this is not available for template expansion in
the job specification - so you can not use {job_id} in various TargetPaths, for example.

	job_name
	A human readable, human set, but not necessarily globally unique ID that represents a particular
beam job. These are set on the commandline with --Bake.job_name=test-flink (or similar traitlets
config). If not set, pangeo-forge-runner will try to automatically generate a descriptive name.

These can only contain lower case characters (a-z), digits (0-9) and dashes (-).

 Release

Release

Releases are automated by the release.yaml GitHub Workflow,
which is triggered by tag events.

To cut a new release, those with push permissions to the repo, may run:

git tag $VERSION
git push origin --tags

Where $VERSION is a three-element, dot-delimited semantic version of the form
v{MAJOR}.{MINOR}.{PATCH}, which is appropriately incremented from the prior tag.

And origin is assumed to be the remote corresponding to
pangeo-forge/pangeo-forge-runner.

 Index

Index

 B
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

B

 	
 	Bake (class in pangeo_forge_runner.commands.bake)

 	
 	bakery_class (pangeo_forge_runner.commands.bake.Bake attribute)

 	beam_executor_resources (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

C

 	
 	config_file (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	
 	container_image (pangeo_forge_runner.commands.bake.Bake attribute)

 	content_providers (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

D

 	
 	DataflowBakery (class in pangeo_forge_runner.bakery.dataflow)

 	
 	disk_size_gb (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

E

 	
 	enable_job_archiving (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	
 	ExpandMeta (class in pangeo_forge_runner.commands.expand_meta)

F

 	
 	feedstock_subdir (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	flink_configuration (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	flink_version (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	
 	FlinkOperatorBakery (class in pangeo_forge_runner.bakery.flink)

 	fsspec_args (pangeo_forge_runner.storage.InputCacheStorage attribute)

 	(pangeo_forge_runner.storage.TargetStorage attribute)

 	fsspec_class (pangeo_forge_runner.storage.InputCacheStorage attribute)

 	(pangeo_forge_runner.storage.TargetStorage attribute)

I

 	
 	InputCacheStorage (class in pangeo_forge_runner.storage)

J

 	
 	job_archive_efs_mount (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	job_id

 	job_manager_resources (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	
 	job_name

 	(pangeo_forge_runner.commands.bake.Bake attribute)

 	json_logs (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

L

 	
 	LocalDirectBakery (class in pangeo_forge_runner.bakery.local)

 	log_datefmt (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	
 	log_format (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	logging_config (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

M

 	
 	machine_type (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

 	
 	max_num_workers (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

 	max_parallelism (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

N

 	
 	num_workers (pangeo_forge_runner.bakery.local.LocalDirectBakery attribute)

P

 	
 	parallelism (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	
 	project_id (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

 	prune (pangeo_forge_runner.commands.bake.Bake attribute)

R

 	
 	recipe_id (pangeo_forge_runner.commands.bake.Bake attribute)

 	ref (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	region (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

 	
 	repo (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	root_path (pangeo_forge_runner.storage.InputCacheStorage attribute)

 	(pangeo_forge_runner.storage.TargetStorage attribute)

S

 	
 	service_account_email (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

 	show_config (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

 	
 	show_config_json (pangeo_forge_runner.commands.bake.Bake attribute)

 	(pangeo_forge_runner.commands.expand_meta.ExpandMeta attribute)

T

 	
 	TargetStorage (class in pangeo_forge_runner.storage)

 	
 	task_manager_resources (pangeo_forge_runner.bakery.flink.FlinkOperatorBakery attribute)

 	temp_gcs_location (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

U

 	
 	use_dataflow_prime (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

 	
 	use_public_ips (pangeo_forge_runner.bakery.dataflow.DataflowBakery attribute)

_static/file.png

_static/minus.png

_static/plus.png

_images/flinkdashboard.png
Global Dashboard = Version: 1.10.0-c5a1.2.0.0-SNAPSHOT Commit: 443

cabd @ 20.04.2020 @

412CEST Message: @

© Overview

Available Task Slots Running Jobs

= sobs 2 4

Total Task Slots 16 Task Man

s Finished 0 Cancele

Running Job List

Job Name Start Time Duration © EndTime :© Tasks Status © Cluster

default: select * from KioskintrusionSFO 20200

587365700987.0010

SFO Predictive Maintenance 2020-04 587365700987.0015

Kiosk Outier Classife 2020-04-20 22:22:00 587365700987.0014

20-04-2

03 26mazs 1587365700987.0013

Completed Job List

Duratio

Job Name Start Time ° EndTime ook Stws o Cluster
2020:0 2020-08-20
XL Preictive Maintenance om 488
. j 55 Jpasos F Fistieo
2020-04-20 020-04-20 B applcaton 1587365700987,
defaut; seect* fom KioskinrusionSFO 2020:04 mis 2 m picaton 1587385700987.0

b o019

nav.xhtml

 Table of Contents

 		
 pangeo-forge-runner

 		
 Running a recipe locally

 		
 Clone a sample recipe repo to work on

 		
 Setting up config file

 		
 Run a pruned version of your recipe

 		
 Run a Recipe on a Flink Cluster on AWS EKS

 		
 Setting up EKS

 		
 Setting up your Local Machine as a Runner

 		
 Setting up Runner Configuration

 		
 Where Data is Discovered

 	